
Abstract

To solve the problem of data inconsistency in
distributed database, this paper designed a
distributed message-oriented middleware to
synchronize heterogeneous database. In detail, the
paper presents a method based on triggers and log
tables to get dynamic incremental data. Moreover,
the paper presents a message transmission
mechanism based on half message and message
review to guarantee data consistency. In addition,
the paper presents a method of generating full data
based on incremental data‘s real-time computation
to achieve high scalability and high availability.
Finally, this paper implemented a prototype system
named VENUS. The final test shows that VENUS
strictly guarantees the data consistency between the
destination database and the source one. Besides,
the message transmission of VENUS is the most
efficient compared to Kafka and RocketMQ.
Keywords—heterogeneous database; distributed
middleware; database synchronization; database
migration; half message; message review

1 Introduction

With the explosive growth of Internet over the past few
years, whether for structured data, semi-structured data or
unstructured data, the traditional stand-alone database has
become increasingly unable to meet the needs. In addition,
stand-alone database has a single point of failure. Once the
single server fails, all the service based on it will be stopped.
So the distributed database has been favored by all
enterprises. The applications based on distributed database
are widely used, such as electronic shopping system and
banking management systems. These distributed applications
usually involve multiple copies of data.

However, due to the decentralization of physical
location, different operating systems on the underlying layer
and different ISPs on the network layer, the local copy in the
distributed environment is like an "islands of information"
and always is inconsistent. Especially for the scenarios of
financial, electronic and other transactions business, the data
consistency between the local databases is particularly

important. Taking an example of data inconsistency, the
users may have just placed an order, but there is no orders for
the shopping cart just a moment, which cannot be tolerated
by users. Therefore, this paper studies data consistency.

In the paper, according to the data model of each local
database which makes up the distributed database, the local
database with the same data model is called isomorphic
database. And the database with different data model is
called heterogeneous database. Due to the high similarity
between homogeneous databases, their synchronization is
relatively simple. So the paper mainly researches
synchronization of heterogeneous one. Traditional data
synchronization [ZHAO et al., 2013] [W et al., 2013] is
generally completed based on master-slave synchronization
between the databases. In a simple isomorphic database’s
business scenario there are a lot of synchronization tools and
this method is feasible. However, in the high complexity of
the business scenarios or with the need of external data
synchronization, the traditional synchronization tool is
difficult to meet the flexibility and security requirements.
Moreover, it cannot used to synchronize heterogeneous
databases.

So, this paper designs a distributed message-oriented
middleware to synchronize heterogeneous database with
some characteristics, such as platform independence and the
loosely coupled. But there are several challenges. The
middleware must ensure message’s order consistency and
exactly-once message semantics. On one hand, the order
between destination database’s received messages and
source database’s sent messages must be consistent, such as a
message generated by adding a record and immediately a
message generated by deleting it. On the other hand, the
exactly-once must be guaranteed, namely no message loss
and repetition. For instance, it is unreliable that a message
generated by a deletion operation is lost or a message
associated with adding a record is received repeatedly. Any
of the above, the data in the source database and destination
database will be inconsistent. Therefore, we present several
methods to solve these challenges.

 For the details, the paper presents a method based on
triggers and log tables to get dynamic data after the
DML(Data Manipulation Language, referred to as DML in
this paper) operations including inserting, updating and

VENUS: Distributed Message-oriented Middleware
towards Heterogeneous Database Synchronization

Bi Li, Rong Yang, Fenghu Dou,Yang Liu,Peng Zhang,Pengxiao Li
National Computer Network Emergency Response and Coordination Center

Institute of Information Engineering ,Chinese Academy of Sciences
National Engineering Laboratory for Information Security Technologies

Email: {libi, yangrong}@iie.ac.cn

deleting on the source database. In addition, as for the fact
that most of middleware [S and J, 2014] [C and X, 2013] [S et
al., 2013] cannot guarantee exactly-once semantics when
network or process failure occurs, the paper presents a
message transmission mechanism based on half message and
message review. Moreover ,due to the fact that most
middlewares[D et al.,2014][I et al.,2015][Y et al.,2015]
cannot generate full amount of messages, we present a
real-time computation method based on the incremental data
to realize heterogeneous data migration. It guarantees high
scalability of destination database and high availability of
source database service.

In the end, the paper designs and implements a
prototype system named VENUS based on the distributed
middleware, to achieve database synchronization from
Oracle to PostgreSQL. The final test shows that VENUS
strictly ensures the data consistency. Besides, the message
transmission speed of VENUS is nearly 2* to Kafka and
RocketMQ. That is to say, the middleware not only meets the
synchronization requirement, but also improves the
performance of the message transmission.

The rest of the paper is organized as follows. We briefly
overview related work in section 2. We describe our design
of middleware in section 3. In section 4, we evaluate the
performance of VENUS. We summarize the paper in section
5 and make some discussion about future work in section 6.

2 Related work

This section mainly introduces domestic and foreign
situation towards heterogeneous database synchronization,
and challenges of using middleware to synchronize database.

There are two main schemes of heterogeneous database
synchronization [J et al., 2001] [Z et al., 2014] at home and
abroad. One is to use automatic or semi-automatic
commercial tools, such as PowerBuilder attached by Pipeline,
Data pump of Borland Delphi or EXP/IMP logical backup
tool of oracle [F et al., 2013]. But with the tools to realize
large amount of data synchronization, the outage time of
source database is very long, which seriously impacts on
original database business; another is to implement a
software or middleware to accomplish database
synchronization. The main research previously is based on
the software such as index table[T et al.,2013] and
trigger-based system[Z et al.,2013].ZHAO Jingling[ZHAO
et al.,2013] proposed a capturing strategy based on trigger to
implement the synchronization. Waqas[W et
al.,2013]presented a generic framework to generate and
synchronize ontologies with existing data sources.

The above methods can solve problems more effectively
between isomorphic databases. But because the standard
model of each component architecture and package data is
not the same, heterogeneous database’s synchronization by
using the various components of the model becomes difficult,
even impossible. So, in recent years, some researchers
develop the middleware to achieve database synchronization.
For example, Emil Vassev[S et al.,2013][G et al.,2014][S et
al.,2016] implements a database synchronization system
based on Microsoft message queuing service. However, the

research based on message queue [F et al.,2015][C et
al.,2016][G et al.,2015] is still in its infancy and the
middleware which satisfies the distributed database
synchronization is less, so then the section focuses on the
feasibility of developing Kafka or RocketMQ on behalf of
open source message-oriented middleware and Amazon SQS
on behalf of commercial one, to synchronize heterogeneous
database.

Amazon SQS [S and J,2014][L et al.,2011] is widely
used commercial message-oriented middleware, which is
simple, safe and does well in the scalability and availability.
But SQS cannot guarantee the order of the messages. The
order of messages that consumers receive may be not the
same as the messages that producers send. SQS only provide
at least one semantic and does not guarantee exactly-one
message transmission semantics. So, it is possible that
consumers receive repeated messages. SQS cannot support
real-time computation of incremental messages to generate
full data. Based on the above reasons, SQS doesn't fit for high
reliability’s requirement in the heterogeneous database
synchronization scenario.

Apache Kafka [Apache,2013] is an open source
distributed message-oriented middleware with high
throughput. Even deployed on the general equipment, the
middleware can also ensure hundreds of thousands of TPS.
But like SQS, Kafka cannot guarantee the consistency of the
messages. Kafka can only guarantee the order of messages in
the partition, other than, between the partitions. The
messages that consumers receive between the partitions may
be random sequence. Kafka can support at most once and at
least one message transmission semantics, but cannot support
the exactly-once. Kafka’s low-level API supports to
subscribe messages from the position where offset equals
zero. So, based on it, we can generate a full amount of valid
messages. However in the case, all the message must
persistent in broker nodes and the nodes can't delete every
message from the beginning. Then, a lot of messages pile up
on middleware’s disk, which will cause the performance
degradation of message transmission, and even middleware’s
denial of service. So Kafka doesn't suit to heterogeneous
database synchronization scenario where a consistent data
transmission mechanism and a method of generating the full
amount of data without affecting other service is needed.

RocketMQ [Apache,2016][S et al.,1996] is a real-time
distributed message-oriented middleware which appears by
the driving of the Alibaba specific business needs. And at
present it has been widely used .But like Kafka in pursuit of
high throughput and low delay of the message transmission,
RocketMQ abandons the exactly-once of messages.
Moreover, RocketMQ cannot get full amount of data. So
RocketMQ is not suitable to be developed for heterogeneous
database migration and synchronization.

In summary, most commercial and open source
middlewares are only appropriate for log application
scenarios which don't care about out of order or repetition.
And they are not suitable for database synchronization
scenarios which has particularly high requirements of data

consistency. So, a middleware for heterogeneous database
synchronization is imminent.

3 System design

3.1 System Architecture Overview

Message

Middleware

Source Database

Server

Paxos

Destination

Database

Server

Destination

Database

Server

Destination

Database

Server

Figure 1. System architecture

As shown in Figure 1, this paper designs a distributed
middleware to synchronize database. In detail, the system
uses the paxos algorithm to synchronize brokers. However,
according to the CAP theory, strong consistency, availability,
and partition tolerance in a distributed environment cannot be
met simultaneously. So, when more than half of the broker
nodes are down, the middleware cannot provide services.
Distributed systems must make a choice among availability
and consistency. Therefore, this middleware provides two
strategies, as follows. The choice of this strategy have a
crucial impact on the leader’s selection, the availability and
consistency of the system.

1) High availability-When more than half of the broker
nodes are down, choose one of the live brokers to become the
leader, to provide services.

2) Strong consistency-When more than half of the broker
nodes down, wait for the faulty brokers to restore, or the
middleware refuses services.

The distributed middleware decouples the source
database and destination databases, so it does not affect the
original business of the source one even if the broker nodes
of middleware collapse. Besides, with the method proposed
in this paper, the middleware can ensure the order and
exactly-once semantics in the process of message
transmission. Moreover the distributed middleware has
highly scalable characteristics. With the growth of business
requirements, it can support massive data synchronization by
extending horizontally the broker nodes. With the method of

generating full data, the architecture realizes database
migration and synchronization from the source database to
more than one destination database. It can be seen that the
paper designs a highly service-based available, highly
message-oriented consistent and highly architecture-oriented
scalable distributed middleware towards heterogeneous
databases synchronization.

3.2 Module Design

Source

Database

Message

Middleware

Message Receiver Module

Message Buffer Module

(Local Queue)

Messag Storage Module

(KV Database)

Message Forwarding Module

Message

Validation

Consumer

Producer

Under

Adaptor Adaptor

Message Receiver Module

Memory

Recovery

Query Alert

Destination

Database

Adaptor

Message Send Module

Upper

Adaptor

Figure 2. module design

As shown in Figure 2, this section describes the main
module design of distributed middleware.

The upper adapter
Adapter in the Upper Adapter realizes the transformation
rules of different data models. It plays a role of converting
every record in the source database to messages
corresponding to the data mode of destination database. And
at last the messages will be understood easily by Adapter in
the Under Adapter. Message Send Module uses Google
Protocol Buffer for message serialization and sends the
messages generated by the Adapter to the message-oriented
middleware.

Message-oriented middleware
As a message transmission channel, middleware is the core
of the heterogeneous database synchronization, both to
ensure high consistency and performance of message
transmission. Firstly, Message Send Module in the Upper
Adapter requests to establish a connection with Message
Receiver Module. Once the connection is established,

Message Receiver Module begins to receive messages.
Message Validation compares the hash value built in the
received message with one obtained by immediately
calculating the message. If the two hash value is different,
Message Receiver Module will request Message Send
Module in the Upper Adapter to resend. If the hash value is
the same, messages will be cached to Message Buffer
Module. After that, Message Storage Module inserts the
messages into the key-value (referred to as KV in the paper)
database. Memory Recovery according to the status of the
data delivery, uses LRU algorithm to replace the memory,
avoiding that the memory is insufficient. Finally, Message
Forward Module monitors the specified port and waits for the
connection from the Under Adapter.
In the middleware, a business corresponds to a local queue in
the Message Buffer Module. Through the whole queue, we
guarantee the order of messages. Moreover, middleware
support the query of metadata, including the status of
messages production and consumption. And middleware
offers abnormal alarm to indirectly guarantee system’s
correct and stable operation.

The Under Adapter
Message Receiver Module in the Under Adapter uses the
interface provided by the Middleware to subscribe message
from Middleware and Google Protocol Buffer for message
deserialization. Then Adapter according to the defined rules
executes the corresponding DML operations on destination
database to quickly storage records.

3.3 Method Design

A method of capturing incremental data based on
triggers and log tables

Source

Database

User Tables

Client

Log Table

Trigger

Dynamic

Capture

Destination

Database

Data

Client

User Tables

Parser Rules

Synchronize

 Incremental Data

Figure 3. A method of capturing incremental data based on triggers

and log tables

Because most of current mainstream databases support
triggers to capture users’ DML operations, so this paper puts
forward a method based on triggers and log tables, which
format is shown in Table 1. The process of the method is
shown in Figure 3.By defining triggers, the method records
control information of each change in the log tables after

DML operations.This method includes two stages: table
configuration and configuration of triggers. The Table
configuration refers to increase some iconic fields in the
every table in the source database, such as Sequence,
recordID and isDeleted.And then create log tables in the
source database. The record format of every table in source
database is shown in Table 2. Trigger configuration means to
configure triggers for each source table to monitor DML
operations. Once changes of records in the source database
occur, the event defined by the trigger will execute, namely
to update iconic fields in the source table, and then the fields
in the log tables.

Table 1. THE FORMAT OF THE LOG TABLE

TableName Sequence …….

Table 2. THE RECORD FORMAT OF EVERY TABLE

Primary

key

recordID isDeleted Sequence ……..

The brief description of the idea is as follows. The

method defines Sequence–a globally incremental serial
number. After each DML operation on a table, the field’s
value in the table named this will add one to record each
change. And with a filed named recordID, it is to mark a
unique record. We also increase a filed named isDeleted in
all the source tables to express whether the record is deleted
or not. When the value of filed named this equals one, it
indicated this record is deleted and zero means a real record.
The program always records a value named lastSequence, a
value of Sequence to take notes the latest already captured
changes. According to the value of lastSequence, the
program scans a log table, which always records the current
largest Sequence of every table, to find the tables where those
Sequence’s value is greater than lastSequence’s value .For
this reason, the program scans tables to capture dynamic
incremental records in these tables. This method is
implemented in the Adaptor module of the Upper Adapter.

A message transmission mechanism based on half
message and message review

The system designs a message transmission mechanism
based on half message and message review, which is defined
as follows, to ensure data consistency, even if a network
failure occurs or the process fails.

1) Half message-The producer, namely the source
database client, has successfully sent the message to MOM
server, but MOM has not yet received the producer's second
confirmation of this message.

2) Message review-If the MOM server finds that a
message is in a "half message" state for a long time, it will
actively ask the producer to inquire whether to send the
message to consumer.

As shown in the Figure 4, the flow of this method is
described below.

1) The producer sends a message to the MOM server.

2) The MOM replies to the producer whether the
message is successfully persisted in the KV database. Then
this message is called half message.

3) The producer begins executing the local transaction
logic and writes the status to the log stream.

4) The producer submits a second confirmation, such as
Commit or Rollback, to MOM based on the results of the
local transaction. If the transaction is successfully written, the
producer sends Commit state. Then the MOM server receives
the status and marks the half message as deliverable. Finally,
the consumer, that is, the destination database client, will
eventually receive the half message. If the transaction is not
written successfully, the producer sends a Rollback status.
The MOM then receives the status and removes the half
message from the KV database. Finally, the consumer will not
receive the message.

5) In the special case of network exception or process
exception, if the secondary confirmation submitted in step 4
above does not reach MOM, the MQM will initiate a message
review after a fixed period of time.

6) After the producer receives the request of message
review,it will check the local transaction of this message.

7) The producer submits the second confirmation again
by checking the final status of the local transaction. Then the
MOM still operates the half message according to step 4.

2.Send success？

4.commit or rollback？

1.Send half message

3.Perform

 local

 transaction

Source

Database

Client

Destination

Database

Client

MOM

LOG

STREAM

5. review the status of local

transactions without

confirmation of 4

6. Check the status of

the local transaction

Rollback:

Delete message

Commit:

send message

Figure 4. A message transmission mechanism based on half message and

message review

As mentioned above, this method removes the message
through the Rollback state, preventing the producer from
sending it repeatedly.And send the message through the
Commit status to avoid loss of the message. Thus, by defining
a half message and a local transaction, even if there are some
exceptions, the data of the source and destination databases
are ultimately consistent.

A method of generating full data based on real-time
computation of incremental data

With the idea of real-time calculation of incremental
data, this paper designs a method of generating full data to
persist all the valid data in the middleware. This method is
implemented in the message-oriented middleware.the
middleware provides two interfaces. One is to get full data
and other is to get incremental data. When the Under Adapter
request messages with a offset equaling -1, it means that the
destination database needs a full amount of data of the source
database, which applies to the database migration scenario;
When a non-nefative offset, it means that the destination
database need incremental data after DML operations and
then the Under Adapter continues sending dynamic data ,
which applies to the scenario of database synchronization.

Table 3. A METHOD OF GENERATING FULL DATA BASED ON RE-

AL-TIME COMPUTATION OF INCREMENTAL DATA

Message status KV database status Operation

isDeleted=1,invalid nonexistent Ignore the message

isDeleted=1,invalid existent Delete the message
from KV database

isDeleted=0,valid existent Ignore the message

isDeleted=0,valid nonexistent Insert the message

into KV database

The brief introduction of the method is as follows.When
Message Storage Module retrieves messages from the
Message Buffer Module, it according to status of KV database
and message to determine whether to storage the message in
the KV database or not. As shown in the Table 3, if the
isDeleted value of the message equals 1, it indicates the
message is generated by the record deletion and the record is
invalid now. If the value is 0, it indicates it is a message
generated by an operation of adding a record and the record is
existent in the source database.The following is to illustrate
the process of the method,receiving a message named
messgae A for example.

1) If a message with the same recordID of message A is not
found in the KV database and isDeleted value built in the
message A equals 1, we ignore the message, because this is a
repeated message for the fact that this is a message associated
with an operation of record deletion, but there is no same
recordID message in KV database now. This may be caused
by a network error.

 2) If found and a value of 1, we delete the message with
the same recordID from KV database, because this is a
message associated with a deletion.

 3) If found and a value of 0, we ignore the message,
because this is a repeated message for the fact that this is a
message of adding a record, but the message is existent in KV
database now. This may be caused by an exception.

 4) If not found and a value of 0, we persist the message
into KV database for the fact that this is a message of adding a
record.

MOM

DB A

Broker

Broker Broker

DB B DB C DB D DB X……

Figure 5. A method of generating full data based on real-time com-

putation of incremental data

In additon,when the database needs to be extended or the
database fails, the middleware supports the real-time access to
full data. As is shown above in Figure 5, if the destination
database B according to the growth of business needs to
expand, for example, database B extends to database C and D,
database C and D just call the full data interface to achieve
high scalability. For this reason, if database A has a single
point of failure, it is easy to start a new database to replace
database A to achieve high fault tolerance.

4 Performance evaluation

The Oracle database is one of the current mainstream
commercial database. However, the operation of Oracle
database is complex and the maintenance work is difficult.
Nevertheless, PostgreSQL database is an open source
database system and is easy to operate and maintain.
Therefore,in pursuit of low cost and easy maintenance, this
paper implements a synchronization prototype system named
VENUS from Oracle to PostgreSQL based on the designed
distributed middleware.

The experiment includes incremental data capture test ,
data transmission test and data consistency test. The data
capture test compares the capture speed of inserting, updating
and deleting. The data transmission test compares the
performance of VENUS with kafka and RocketMQ. The data
consistency test checks database consistency when broker
fails.

4.1 Test Environment

Table 4. TEST ENVIRONMENT

hardware server configuration

Operating system Red Hat Enterprise Linux Server release 6.4

（Santiago）

CPU Intel(R) Xeon(R) CPU E5-4620 0 @ 2.20GHz（64

cores）

Memory DDR3 126GB

Hard disk SATA 822GB

In the Oracle database and PostgreSQL database, we
establish the same structure of a table named student, which
includes four fields: ID (number), name (varchar), address
(varchar) and sex (varchar). Then we create triggers and log
tables on Oracle database. Middleware is deployed on the
same stand-alone server and its configuration is as shown in
Table 4 . We use 10g version of Oracle and 9.1.1 version of
PostgreSQL. In this test, Kafka version is 0.8.2 and
RocketMQ version is 3.4.6. The number of Kafka partitions
is 1 and replication factor is set to 1, which is the same as
RocketMQ. Kafka and RocketMQ all use synchronous
replication strategy.

4.2 Incremental data capture test

When we continuously inserts 100,000 of data in Oracle
Database, the Upper Adapter records the start time at which
the first incremental data are detected and the end time at
which the last incremental data are detected. Similarly, when
we update 100,000 of data and delete 100,000 data, the time is
also recorded in the Table 5 .

Table 5. INCREMENTAL DATA CAPTURE PERFORMANCE TEST

Operation start

time

end

time

100,000 data capture

time(millisecond)

Insert 351 18512 18161

Update 26952 45036 18084

Delete 59842 78200 18358

Figure 6. Incremental data capture test

As shown in the Figure 6, the horizontal axis indicates
operations of inserting, updating and deleting in turn. The
vertical axis represents the capture time of 100,000 operation
and the unit is millisecond. Experiments show that the
incremental data capture speed of three oprations is almost
equal. And the detection of 100,000 incremental data can be
completed by about 18s. The experimental results also
indirectly demonstrate the high efficiency of soft deletion,
instead of really deleting a record from Oracle database. The
method reduces the access to database, avoiding the impact of
the original database services

4.3 Data transmission test

In this experiment, we records the start time when the
first message sends and the end time when the last message is
received. The data transmission is calculated by end time
minus start time.This experiment develops a producer and
consumer based on the API of Kafka and RocketMQ, whose
producer multiplexes some code of the Upper Adapter and
sends incremental data. The same as VENUS, this
experiment records the start time at which the producer sends
the first data and the end time at which the consumer receives
the last data o. The transmission time of the three middleware
is shown in the Figure 7. The horizontal axis indicates Kafka,
RocketMQ and VENUS. The vertical axis indicates
transmission time of corresponding operations and the unit is
millisecond.

Figure 7. Performance Test

As shown in Figure 7 ,experimental results show:
1. The transmission speed of message corresponding to the
inserting, updating and deleting operations has not much
difference which is because the number of messages
generated by three operations is almost equal.
2. The message transmission of VENUS is the most efficient
and the message transmission speed is nearly 2* to that of
Kafka and RocketMQ. So VENUS realizes the real-time
message transmission.

4.4 Data consistency test

This section tests whether the destination database is
consistent with the source database when broker fails. This
experiment in turn inserts, updates and deletes 10w records in
the Oracle database. Simulate the broker’s failure by pulling
out the host power, and then restart Broker to view the
database’s status.

Experiments show that kafka and RocketMQ lost some
messages, because kafka and RocketMQ are set to
asynchronous brush strategy. VENUS doesn’t lose messages,
because VENUS’s Data Dtorage Module uses synchronous
brush strategy. Kafka and RocketMQ receive duplicate
messages, while VENUS will not receive duplicate ones,
because VENUS based on the primary key named Sequence

in the KV database ensures that the message is idempotent.
The experimental results show that the student in the
destination database is exactly the same as the student table
in the source one. Therefore, in the case of failure of the
broker server, VENUS guarantees the data consistency.

5 Conclusion

On conclusion, in pursuit of the data consistency of
distributed database, this paper implements a
synchronization prototype system from Oracle to
PostgreSQL. And this paper puts forward a method based on
triggers and log tables to get incremental data. Moreover, the
paper introduces half message and message review to
guarantee data consistency. In addition, the paper presents a
method of generating full data to realize the expansion and
fault tolerance. Finally, the test results prove that the
middleware in the paper improves the performance of
message transmission based on the assurance of data
consistency.

6 Future work

In this paper, the distributed middleware for
heterogeneous database synchronization only realizes the
synchronization from relational database to relational one.
With the application development of social networking
services, more and more developers have tried to abandon
traditional relational database, and use the relatively stable
and reliable NoSQL database. Therefore it makes sense to
achieve a tool to assist developers accomplishing migration
and synchronization from the relational database to
non-relational one. So the future work in this paper include
designing a distributed middleware model to synchronize
data from a relational database to non-relational one. And
based on this model, we will develop a prototype system to
realize data migration and synchronization from Oracle
database to HBase database.

Acknowledgments

The research work is supported by the National Key
R&D Program with No.2016YFB0800302, Key Research
and Development Plan with No.2016YFB081304 , National
Natural Science Foundation of China (No. 61402464), Youth
Foundation of National Computer Network Emergency
Response Technical Coordination Center (No.2016QN-19.)

References

[ZHAO et al.,2013] ZHAO Jinling, TAN Xianhai, WANG
Yalan, HE Lei.Implementation of change capture and
Dynamic Synchronization System of distributed
heterogeneous database based on XML [J]. RAILWAY
COMPUTER APPLICATION, 2013 (10): 37-40.

[W et al.,2013] Ahmed W, Aslam M A, Lopez-Lorca A A, et
al. Using ontologies to synchronize change in relational
database systems[J]. Journal of Research and Practice in
Information Technology, 2011, 43(2): 89.

[Apache,2013]Kafka[online]2013,https://kafka.apache.org/

[Alibaba,2016]RocketMQ[online]2016,https://www.oschina
.net/p/RocketMQ

 [S and J,2014]Mathew S, Varia J. Overview of amazon web
services [J]. Amazon Whitepapers, 2014.

[C and X,2013] Zhang C, Liu X. HBaseMQ: A distributed
message queuing system on clouds with
HBase[C]//INFOCOM, 2013 Proceedings IEEE. IEEE,
2013: 40-44.

[S et al.,2013]Hernández S, Fabra J, Álvarez P, et al. A
reliable and scalable service bus based on Amazon
SQS[C]//European Conference on Service-Oriented and
Cloud Computing. Springer Berlin HeIDelberg, 2013:
196-211.

[D et al.,2014] Patel D, Khasib F, Sadooghi I, et al. Towards
in-order and exactly-once transmission using hierarchical
distributed message queues[C]//Cluster, Cloud and GrID
Computing (CCGrID), 2014 14th IEEE/ACM
International Symposium on. IEEE, 2014: 883-892.

[I et al.,2015] Sadooghi I, Wang K, Patel D, et al. Fabriq:
Leveraging distributed hash tables towards distributed
publish-subscribe message queues[C]//Big Data
Computing (BDC), 2015 IEEE/ACM 2nd International
Symposium on. IEEE, 2015: 11-20.

[Y et al.,2015] Liang Y, Tang X, Bing L, et al. Study on
Service Oriented Real-Time message-oriented
middleware[C]//Semantics, Knowledge and Grids (SKG),
2015 11th International Conference on. IEEE, 2015:
207-211.

[J et al.,2001] Lehman T J, Cozzi A, Xiong Y, et al. Hitting
the distributed computing sweet spot with TSpaces[J].
Computer Networks, 2001, 35(4): 457-472.

[Z et al.,2014] Cai Z, Ji S, He J, et al. Distributed and
asynchronous data collection in cognitive radio networks
with fairness consideration [J]. IEEE Transactions on
Parallel and Distributed Systems, 2014, 25(8):
2020-2029.

[F et al.,2013] Wang J F, Shi Z F, Qu Z, et al. Research and
Implementation of Oracle Database Synchronization
Timing[C]//Advanced Materials Research. Trans Tech
Publications, 2014, 989: 4917-4919.

[T et al.,2013] Karnagel T, Dementiev R, Rajwar R, et al.
Improving in-memory database index performance with
Intel® Transactional Synchronization
Extensions[C]//High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International
Symposium on. IEEE, 2014: 476-487.

[Z et al.,2013] Zhang Z, Lu C. Research and implementation
for data synchronization of heterogeneous
databases[C]//Computer and Communication
Technologies in Agriculture Engineering (CCTAE), 2010
International Conference On. IEEE, 2010, 3: 464-466.

[S et al.,2013] Ji S, Cai Z. Distributed data collection in
large-scale asynchronous wireless sensor networks under
the generalized physical interference model [J].

IEEE/ACM Transactions on Networking, 2013, 21(4):
1270-1283.

[F et al.,2015] Ringeval F, Eyben F, Kroupi E, et al.
Prediction of asynchronous dimensional emotion ratings
from audiovisual and physiological data[J]. Pattern
Recognition Letters, 2015, 66: 22-30.

[C et al.,2016] Kim B C, Jang C. A Distributed Instant
Message System Architecture using Media Control
Channel [J]. Journal of the Korea Institute of Information
and Communication Engineering, 2016, 20(5): 979-985.

[G et al.,2015] Wang G, Koshy J, Subramanian S, et al.
Building a replicated logging system with Apache Kafka
[J]. Proceedings of the VLDB Endowment, 2015, 8(12):
1654-1655.

[Y et al.,2015] Lu Z Y, Guo Z B, Du X F, et al. A Method of
Data Synchronization Based on Message Oriented
MIDdleware and Xml in Distributed Heterogeneous
Environments[C]//Proceedings of International Conf. on
Artificial Intelligence and Industrial Eng. no. Aiie. 2015:
210-212.

[S et al.,1996] Passint R S, Oberlin S M, Fromm E C.
Messaging facility with hardware tail pointer and
software implemented head pointer message queue for
distributed memory massively parallel processing system:
U.S. Patent 5,581,705[P]. 1996-12-3.

[L et al.,2011] Tran N L, Skhiri S, Zim E. Eqs: An elastic
and scalable message queue for the cloud[C]//Cloud
Computing Technology and Science (CloudCom), 2011
IEEE Third International Conference on. IEEE, 2011:
391-398....

[G et al.,2014] Taboada G L, Dominguez J T, Biempica R D.
Method and middleware for efficient messaging on
clusters of multi-core processors: U.S. Patent
8,839,267[P]. 2014-9-16.

[S et al.,2016] Tarre M S, Rantzau R, Dutta D, et al.
Multi-datacenter message queue: U.S. Patent Application
15/154,141[P]. 2016-5-13

